Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Reşat Ustabas, ${ }^{\text {a }}$ Ufuk Çoruh, ${ }^{\text {b }}$ Nesuhi Akdemir, ${ }^{\text {c }}$ Erbil Ağar ${ }^{\text {c }}$ and Metin Yavuz ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Physics, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, Kurupelit 55139, Samsun, Turkey,
${ }^{\mathbf{b}}$ Department of Computer Education and Instructional Technology, Educational Faculty, Ondokuz Mayıs University, 55200 AtakumSamsun, Turkey, 'Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ${ }^{\text {d Department of Physics, Faculty of Arts and }}$ Sciences, Ondokuz Mayıs University, Kurupelit 55139, Samsun, Turkey

Correspondence e-mail: ucoruh@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.116$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The molecular conformation of the title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$, is stabilized by two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The crystal packing is characterized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

As part of an investigation of the synthesis of peripherally tetra-substituted phthalocyanines, the title compound, (I), was obtained and its structure analysed by standard analytical techniques (elemental analysis, IR). Phthalocyanine compounds have attracted attention for a long time because of their unique properties, such as semiconductivity, photoconductivity, chemical activity and the formation of liquid crystals (Leznoff \& Lever, 1989-1996).

(I)

The two benzene rings of compound (I) form a dihedral angle of $78.81(1)^{\circ}$. The $\mathrm{C} \equiv \mathrm{N}$ bond lengths $[\mathrm{N} 1 \equiv \mathrm{C} 1=$ 1.137 (3) \AA and $\mathrm{N} 2 \equiv \mathrm{C} 2=1.164$ (3) \AA] are close to the values reported in the literature $\left[1.153\right.$ (4) \AA in $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$ (Çoruh et al., 2003), 1.142 (3) \AA in $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$ (Çoruh et al., 2005) and 1.148 (2) \AA in $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{~N}$ (Boitsov et al., 2002)]. The $\mathrm{N} \equiv \mathrm{C}-\mathrm{C}$ angles are close to linear $\left[\mathrm{N} 1 \equiv \mathrm{C} 1-\mathrm{C} 8=178.3(3)^{\circ}\right.$ and $\left.\mathrm{N} 2 \equiv \mathrm{C} 2-\mathrm{C} 3=179.8(3)^{\circ}\right]$.

The overall conformation of (I) is stabilized by two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2). The crystal packing is characterized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Experimental

2-tert-Butylphenol ($2.0 \mathrm{~g}, 13.33 \mathrm{mmol}$) and 4-nitrophthalonitrile $(1.5 \mathrm{~g}, 8.67 \mathrm{mmol})$ were dissolved in dry dimethylformamide (40 ml). After stirring for 30 min at room temperature, dry fine-powdered potassium carbonate ($2.00 \mathrm{~g}, 14.5 \mathrm{mmol}$) was added portionwise over 2 h with thorough stirring. The reaction was stirred for 24 h at room temperature and poured into ice-water (200 g). The product was filtered off and washed with NaOH solution $(10 \% w / w)$ and water until the filtrate was neutral. Recrystallization from methanol gave a white product (yield $1.41 \mathrm{~g}, 59.0 \%$). Single crystals of (I) were obtained from a solution in ethanol at room temperature via slow evaporation. Elemental analysis, calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C 78.24, H 5.84, N 10.14%; found: C 78.20 H 5.90 N 10.10%. IR ($v_{\max }, \mathrm{cm}^{-1}$): 3070-3025 (Ar-CH), 2950-2870 (CH), 2210 (CN).

Received 24 January 2006 Accepted 27 February 2006

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=276.33$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.2462(10) \AA$
$b=9.4543(12) \AA$
$c=16.1120(17) \AA$
$V=1560.8(3) \AA^{3}$
$Z=4$
$D_{x}=1.176 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-2 diffractometer

ω scans

Absorption correction: none
8384 measured reflections
2428 independent reflections
1280 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.116$
$S=0.90$
2428 reflections
190 parameters

Mo $K \alpha$ radiation
Cell parameters from 1280 reflections
$\theta=2.4-29.3^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Tablet, colourless
$0.50 \times 0.40 \times 0.20 \mathrm{~mm}$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=29.3^{\circ}$
$h=-13 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-22 \rightarrow 0$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.06 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.032$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 5$	$1.359(3)$	$\mathrm{C} 2-\mathrm{N} 2$	$1.164(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.424(3)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.137(3)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$179.8(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8$	$178.3(3)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C16-H16B \cdots O1	0.96	2.27	$3.024(4)$	135
C18-H18C O1	0.96	2.64	$3.309(4)$	127
C7-H7 $\cdots \mathrm{N}^{\mathrm{i}}$	0.93	2.73	$3.398(4)$	129

Symmetry code: (i) $x+\frac{1}{2},-y-\frac{1}{2},-z+1$.
All H atoms were located in a difference synthesis and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or

Figure 1

The molecular structure of (I), with the atom-numbering scheme Displacement ellipsoids are drawn at the 50% probability level.
$1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H . In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank The Faculty of Education, Ondokuz Mayis University, Turkey, for the supporting of this work (under grant No. EF. 107 of The University Research Fund).

References

Boitsov, S., Songstad, J. \& Törnroos, K. W. (2002). Acta Cryst. C58, o66-o68. Çoruh, U., Tümer, F., Vázquez-López, E. M. \& Demir, Ü. (2005). Acta Cryst. E61, o1680-o1682.
Çoruh, U., Ustabaş, R., Tümer, F., García-Granda, S., Demir, Ü., Ekinci, D. \& Yavuz, M. (2003). Acta Cryst. E59, o1339-o1341.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. New York: Weinheim-VCH Publishers Inc.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.17) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

